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RADIATI~ON INSTABILITY OF A CIRCULAR CYLINDER 
IN A UNIFORM FLOW OF A TWO-LAYER FLUID-j. 
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A solution of the plane bar problem of the oscillations of a horizontal circular cylinder in a uniform flow of a two-layer unbounded 
fluid is obtained using the method of multipole expansions. The direction of the flow is perpendicular to the cylinder axis. The 
whole cylinder lies in the upper or lower layer. The fluid is assumed to be ideal and incompressible, the flow in each layer being 
a potential one. All the components of the radiation load (the apparent masses and damping coefficients) are determined and 
the regions of existence of radiation instability are found, depending on the flow velocity for a cylinder suspended by horizontal 
and vertical elastic links. By solving the integrc-differential equation numerically the relative oscillations of the body under specified 
initial conditions are found. 0 1998 Elsevier Science Ltd. All rights reserved. 

In a study of the hydrodynamical characteristics in the linear theory of a moving submerged body it 
has been found that the damping coefficients can be negative. This means that, as in the case of flutter 
in aeroelasticity, the motion of a rigid body with oscillatory degrees of freedom in a fluid can exhibit 
radiation instability, that is, amplification of oscillations can occur at the expense of the energy of 
translational motion. 

Negative damping coefficients have been investigated [l] when computing the hydrodynamic loads 
acting on an ellipsloid moving uniformly under the free surface of a homogeneous fluid and 
simultaneously undergoing oscillations in one of the six degrees of freedom. It was noted that this only 
occurs at very high velocities of the body and indicates that the energy of translational motion (or flow) 
can be converted both into wave emission and oscillations of their source. When a submerged body 
moves near a sharp density jump in a stratified fluid, for example, a two-layer fluid with a small density 
difference between the layers, negative damping coefficients occur even for relatively moderate motions 
of the body [2]. 

The loss of stability of the relative position of equilibrium of an oscillator moving at constant velocity 
and interacting with g?avitation waves has been investigated in [3-6]. An instability effect was discovered 
by computing the energy losses for a moving medium [3] and a circular cylinder [4] under the interface 
boundary in an unbounded two-layer fluid, and also for a sphere under the free surface of a homogeneous 
fluid of finite depth or an unbounded uniformly stratified fluid [5]. An asymptotic analysis has been 
carried out [6] for the integro-differential equation describing the oscillations of a circular cylinder under 
the free surface of an. unbounded homogeneous fluid. The dipole approximation of a moving body has 
been used [3-6] and the possibility of oscillations of a body with only one horizontal degree of freedom 
has been considered. It is well known that the dipole approximation in the radiation problem gives a 
singular solution at tlhe resonance frequency, and only taking into account a body of non-zero volume 
can lead to a finite solution. This conclusion was obtained in [7] for a semibounded homogeneous fluid 
with a free surface and can be extended to the case of a two-layer unbounded fluid. 

The approach presented below is based on the complete solution of the linear radiation problem for 
a circular cylinder in the flow of a two-layer fluid by the method of multipole expansions (this solution 
is similar to that obtained earlier in [8, 91). The possibility of non-decaying oscillations of a cylinder 
with two degrees of freedom is investigated using the results of the hydrodynamic theory of pitching 
[lo] using the methods of the theory of aeroelasticity [ll]. 

1. FORMULATION OF THE PROBLEM OF THE OSCILLATIONS OF 
A BODY IN A UNIFORM FLOW OF A TWO-LAYER FLUID 

In the unperturbed state the upper fluid layer of density p1 occupies the domain 1 x 1 < =, y < 0 
and the lower fluid layer of density p2 = pi(1 + E) (E > 0) occupies the domain ] x ] < m,y > 0, where 
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x is the horizontal 
with velocity U in 

coordinate and y is the vertical coordinate. There is a uniform flow around the body 
the negative direction of the x axis. The cylinder undergoes small oscillations in the 

two possible degrees of freedom with frequency w. 
Assuming that the perturbed oscillatory motion of the fluid is steady, we can seek the total velocity 

potential of the whole wave motion in the form 

@‘“‘(x,y,t) =-UX+U@~)(X,~)+R~ iqjQ:J’(x,y)eim 
j=l 

where @ are the velocity potentials corresponding to the uniform motion of the body with unit velocity, 
@$l(j = 1,2) characterise the radiation potentials due to the forced pitch of the body in the horizontal 
direction (j = 1) and vertical direction (j = 2), qj are the upper oscillation amplitudes of the body, the 
superscript s = 1,2 is introduced for the upper and lower layer, respectively, and t is the time. 

For time-independent potentials inside the fluid 

As(‘) = 0 (y > O),. AS(*) = 0 (y < 0) (1-l) 

According to linear wave theory, the boundary conditions on the interface have the form 

a*[(l+E)m(*)-~(‘)~/ax*+E~~(l)/ay=~, aW9+=aW2)/ay cy=o) (1.2) 

where l,t = g/U*, and g is the acceleration due to gravity. In the far field we must impose the radiation 
condition, which means that no upstream waves are present, and also the condition for damping of the 
wave process as 1 y 1 + = 

a;I;%ax+o (x+=), /a3Waxl<m (x+-=) (~=1,2) (1.3) 

aPay + 0 cy -_) -1, a%(*) I ay + 0 (y + --) (1.4) 

On the circular contour S : x2 + b + (-1)9h]2 = a* we pose the impermeability condition 

aW/an = nl (x, y E s) (1.5) 

where n = (nr, n2) is the inner normal to the contour S, II is the cylinder radius, and h is the distance 
between the cylinder axis and the interface boundary (h > a), q = 1 (q = 2) when the cylinder is placed 
in the upper (lower) layer. 

The components of the radiation potentials satisfy the equations 

A@(r) = 0 (y > 0). Aaj 1 (*) = 0 (y c 0) (j = 1,2) 

similar to (1.1) and the boundary conditions 

~[(~+&)~~)-~II)l+&~a~:!)/a~=o, a~~)/ay=a$?ay cy=o) 

(1.6) 

(1.7) 

a4$Vay+o (y+w), a$%ay-+O (y-+-=) 

ad+) I iIn = iWnj - Umj (x,y E S) 

where 

N = cua 1 ax - io)*, (m, , m2) = a(aW 1 ax, a&(9) I ay) / an 

The radiation conditions for a,@) require that a wave can propagate upstream only when its phase velocity 
is positive and the group velocity is greater than the velocity of the body. Otherwise wave motion can only 
be present behind the body. The hydrodynamic forces F = (Fr, F2) acting on the cylinder can be determined 
by integrating the fluid motion (without the hydrostatic term)p = -pq(&D(91/& + 1 V@(q) I*/2) around 5. 
It is convenient to replace this integral by the sum 

Fj = F, + Re(Frjeiw) 0’ = 192) 
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where Fsj are the time-independent forces (the wave resistance and lift) acting on a stationary body in 
a uniform flow, and F, are the radiation forces, which are usually written in matrix form (for more details, 
see for example [2,16]) 

Frj = v I T’i + VZ~‘/Z 

The quantities qk represent the complex force acting in the i direction and due to the sinusoidal 
oscillations of the body with the unit amplitude in direction k. They can be represented in the form Tjk 
= 02Ajk-iUBjk. The real qt.tamitiesAjk andBjk are known as the apparent mass and damping coefficients, 
respectively. 

Introducing the polar system of coordinates r, 8 with origin at the centre of the contour S 

x = r sine, y + (-l)% = r co& (4 = 1,2) 

and taking into account that 

4 = -sin& n2 = -co&l 

for a circular contour, we obtain [9] 

(1.10) 

(1.11) 

(1.12) 

where the asterisk denotes the complex conjugate. 

2. SOLUTION OF THE STEADY-STATE PROBLEM 

The solution of the steady-state problem by the method of multipole expansions was obtained in [8]. 
We shall present only the basic results of this solution, which are necessary to study the radiation problem 
(Section 3). \ 

When considering a cylinder in the lower layer we represent the solution of Eqs (1.1) with boundary 
conditions (1.2)-(1.4) in the form 

&(I) =:(l+ y)R&& 
.[ 

PJ.l -k”e 
ok-v 

-k(y+h+LQ + tine-v(y+h+ir) 1 
S(2) =I Rexa"C n ~{~-~[p.v.~kn-'~.k(Y-h-U)~+ 
+ixv”-‘(v+~)eV’Y-h-~)]); v=py, y=E/(2+&) 

(p-v. denotes the principal value of the integral; summation over IZ and later on over m is from 1 to CO). 
To take boundary condition (1.5) into account we use the well-known relation 

exp[k(y + h f ix)1 = I+ C. @-$-exp(f ime) 
m . (2-l) 

The value of the potential in the lower layer can be written in the form 

W2) = lb x 
i[ 

5 Cm - rx anrm 
m!(n-l)! 

I~+,_,Cn’e~” - m 
n 1 

-~~~$&c.‘.‘-’ , 1; =p.v.jkm~e-2~dkfilcvm(vf~)e-2vn 
0 

(2.2) 
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We can compute 1; from the recursive formula 

(2.3) 

Ei is the integral exponential function of real argument [12]. 
Differentiating (2.2) with respect to r and using (1.5) and (l.lO), we obtain the system of linear 

equations for C, 

Cm +yx a m+n 

” Ii+m_l = -i6,, 
n m!(n-l)! (2.4) 

where S,, is the Kronecker delta. Substituting (2.4) into (2.2) and differentiating with respect to 8, we 
obtain 

for r = a. 

a(@2) - x) / &I = -2 Re C imCme-he 
m 

(2.5) 

When considering a cylinder in the upper layer, as previously we obtain 

I eeim8 + 

(2.6) 

r’ 
The system from which to determine C, differs from (2.4) in that y is replaced by -‘I, a by -a, and 

n+m+r by G+m+i. An expression similar to (2.5) holds in this case also. It follows that in both cases 
the time-independent forces in (1.11) have the form 

3. SOLUTION OF THE RADIATION PROBLEM 

We shall seek the potential in the lower layer for the radiation problem (1.6)-(1.8) using a radiation 
condition of the form (the cylinder is in the lower layer) 

(3.1) 

The real quantities k;, k; exist only when z G l/4. Otherwise the last term in braces for F& vanishes. 
To compute the second derivatives in boundary conditions (1.9) we use the following relations, as in 

PI 

(3.2) 
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2x &5(2, 

I 
im ” a(?irc2’ -X) im8 

o anay 
e’“@dQ = -_ l Iunp+ a2 o ae e cosCM3=--;;~ m 

P,’ =(m+l)&+, *(m-l)C,_, 

Substituting (2.1) into (3.1), differentiating with respect to r, and using (1.9), taking (3.2) into account, we 
obtain the following systems of linear equations from which to determine the unknown coefficients D,: 

D$++ a 
lfl+ll 

n m!(n-l)! Hnf+m-,D$ =X& (j=l,2) (3.3) 

where 

K+= (ao6,1 -iUPi la)/2, X,+, =(iUP;’ la-ati,,)/ 

Xi, =(UP,+ /a-ia&,,)/2, X& =(UPi’ la-ia&,,)/ (34 

H,f, =p.v.[k”[y+$$=(&--&)]e-2Mdk+ 

To evaluate the integrals in (3.4) we use recursive formulae similar to (2.3). When z > l/4, the last 
term in H-, should be omitted, the integral is to be understood in the ordinary sense, and the integral 
exponential function of the complex argument El should be used in the recursive formula. In this case 

H; p! =-+eIrn[k;v,(k,-)] 
(2hy+l - 

where 

V,(k;)= j km --2tidk = W,(-2hk;) / (2h)” 
ok-k; 

w,,(z)=(m-l)!-zW,_l(~) (m32), W,(z)=l-Z&E,(Z) 

On the body surface for T = a 

(by’ =C[(2Dym -Xj;,)esime+(2D& -XTm)eime]+cj (j=1,2) 

where c1,2 are constants siiilar to the last term in (2.6). 
If the cylinder is placed in the upper layer, then, by analogy with (3.1) 

@p’ =Ca” DT 
n 

[ ,,,(F+&)+D;[$+&;)] (/=1,2) 

where 

4; =&{p.jk”-‘[y -&(&--&)]x 

(3.5) 

Using (1.9), we albtain a system of equations which differs from (3.3) in that a is replaced by 
-a, z+,,,-r byHz+,,_,,, and yby -yin the expression for H’,. The expressions for @/‘l on the body surface 
are the same as in (3.5). 
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a6 a8 

Fig. 1. 

After solving system (3.3) we determine the radiation load coefficients l& Substituting (1.9) and (3.5) 
into (1.12), we obtain 

7jk = 2xpJm[x;,t(2D;, - x&)+x;;(2D& -X&)1 (3.6) 
m 

The diagonal damping coefficients Bj can also be expressed in terms of the potential characteristic 
@,@I on the interface in the far field by means of the law of conservation of energy. According to the 
relations for a two-layer fluid [2] and a homogeneous fluid (see for example [9]), Bj cm, in general, be 
represented as the sum of four terms of constant sign corresponding to the waves which occur in the 
far field, the contributions of all waves apart from k‘: being positive. Physically, this means that the wave 
ki ensures an energy flux towards the body, while the wave energy flux for the three elastic waves is 
directed away from the body. It is possible for negative values of bii to appear only when the contribution 
of kf predominates. 

Tables with the values of all the components of the hydrodynamic load for a homogeneous fluid are 
given in [9]. To obtain values with an accuracy up to five significant figures it suffices to use only eight 
terms in (3.3). 

The isolines of the damping coefficient Eli = wBrr/(p~~u) as a function of the Froude number 
Fr = U/$wu) and z are presented in Fig. 1 for a two-layer fluid fore = 0.03, and h/a = 2 (the cylinder 
is in the lower medium). The positions and values of the extrema of the given function are indicated 
by dots and numbers, the value z = l/4 being shown by an arrow. 

In Table 1 we give the maximum values (B$ and minimum values (BJ of Bji = UBjj/(pnEa), their 
location (r,, Fr, and r_, Fr_, respectively), and also the values of Fr. at which the first negative values 
are attained by the diagonal damping coefficients for the following positions of the cylinder when h/u 
= 2: A-under the free surface of a homogeneous fluid (E + rn)_and B-in the lower or upper layer 
in a two-layer fluid (E = 0.03). It is clear that the behaviour of Bj is quite similar in all these cases 
in the chosen dimensionless variables. The values given in the table are obtained for 0 s z G 1, 
0 c Fr =Z 2 on a grid with steps AZ = 0.02, AFr = 0.05. In [4] the value Fr. = 0.74 was given for Brr in 
a two-layer fluid using the dipole approximation. 

Table 1 

A B 

j=l 2 1 2 

T+ 0.22 0.20 0.24 0.24 
Fr+ 035 0.65 0.50 0.55 
% 1.97 2.53 1.57 1.81 

T- 0.26 0.26 0.26 0.26 
Fr- 1.30 I.15 1.35 1.25 
isi -0.35 -0.32 -0.17 -0.17 

Fr. 0.75 0.70 0.75 0.75 
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4. THE MOTION OF A CYLINDER ATTACHED TO ELASTIC LINKS 

Suppose that the cylinder is attached to linear elastic springs with four stationary points arranged 
pairwise on the vertical and horizontal lines passing through its centre. In the unperturbed state the 
cylinder is at rest, the time-independent load (the wave resistance and lift) being balanced by the action 
of the springs. We introduce a fixed system of coordinates x1, x2 passmg through the centre of the 
unperturbed cylinder and parallel to the original system n, y. Suppose that the cylinder is displaced by 
a small distance with respect to the given position of equilibrium at the initial time t = 0, so the coordin- 
ates of its centre are equal to x(0) = ($,x4 ( ] x(0) ] G a). Th e subsequent motion x(t) = (xi(t), x2(t)) 
of the cylinder is assumed to be oscillatory about the fixed mean position. With all the forces approxi- 
mated linearly, it can be described by the system of integro-differential equations (see for example [13]) 

k=l 
(i = 1,2) 

0 
(4.1) 

with initial conditions 

x,(O)=xP, x2(0)=x~, i,(0)=i2(O)=0 

The dot denotes differentiation with respect to t, Mjk and C’k are the diagonal coefficients of the masses 
and restoring forces withMii = M22 = M, Cii = hi, C, = &, M = xpr,u2 is the linear mass of the cylinder, 
p. is the density of the material of the cylinder, hi and &, are the stiffnesses of the horizontal and vertical 
springs, respectively, and the kernel Qjk(t) is the delay function. 

In the limiting case as 0 + 00 the behaviour of the apparent mass and damping coefficients can be 
obtained by analysing (3.6). For the problem under consideration all = a22 = ao, where a0 is the apparent 
mass of the circular cylinder in a weightless stationary two-layer fluid, and al2 = azl = o. The off-diagonal 
damping coefficients depend on the flow velocity and b12 = -b2i, bll = b22 = 0. 

When the cylinder undergoes steady-state harmonic oscillations with frequency w, its motion satisfies 
the following equations, analogous to a mechanical oscillator (see for example [lo]) 

ki/ Mjk + Ajk (O)I ok + Bjk(m)ik + cjkxk = 0 (i = 1,2> 

Substituting into these equations the relations 

xk(t) = Re[q@)eiN] (k = 1,2) (4.2) 

for the trajectories of the body, we obtain the relations 

ki:(Mjk + Ajk JO2 - ‘djk - cjk ]qk = 0 (j = 192) (4.3) 

from which to determine the complex amplitudes rh. 
The simplest task is to study the behaviour of a cylinder with only one degree of freedom. Suppose 

that there are no vertical springs and the cylinder oscillates only along the horizontalxi axis, remaining 
at a fixed distance h from the interface. In this case (4.3) can be reduced to a single equation 

(M+A,l)02-ioB,,-hl=0 (4.4) 

which implies that steady-state oscillations are only possible at a frequency ct~* when Bll(w*) = 0 and 
the stiffness of the horizontal spring is equal to 

2 
h, = o.[M + A,i(w,)l (4.5) 

Following the harmonicity hypothesis, which is widely used in the theory of aeroelasticity, we replace 
the real quantity ce in the coefficients of (4.4) by a complex number w + i5 putting 1 5 1 4 1. The 
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-2 
0 2 4 

Fig. 2. 

hydrodynamic loads are functions of the real argument, as before. By (4.2) the oscillation are damped 
when < > 0 and amplified when 5 K 0. Separating the resulting equation into the real and imaginary 
parts, we obtain 25 = cct&i/(M + Ail). Consequently, fixing the stiffness of the horizontal springs and 
varying the free-stream velocity in the unsteady problem on the development of the oscillations of the 
body following an initial displacement, we obtained damped oscillations for sufficiently small Froude 
numbers, a steady-state oscillation regime with frequency o+ when condition (4.5) is satisfied, and 
increasing oscillations as the free-stream velocity is increased further. 

The results of the numerical solution of Eqs (4.1) by the method of finite-differences [14] in the case 
of one degree of freedom are presented in Fig. 2 for a two-layer fluid (the parameters correspond to 
Fig .l) for various Froude numbers Fr = l/2; 1; 2 (curves l-3) and a spring with stiffness At = hi/(p#z) 
= 3, p. = p2, L2 = &/(A4 + ail)), ait/(npfl*) = 0.9982. When Fr = 112 the values of Bir are positive 
and the oscillations decay. The value Fr = 1 is closest to the null isoline of the damping coefficient in 
Fig. 1. The case Fr = 2 corresponds to negative values of Bii and the oscillation amplitudes increase. 

The case of two degrees of freedom can also be analysed using the harmonicity hypothesis. In place 
of owe substitute o + is in (4.3) and we equate the determinant of this homogeneous linear system 
to zero. Separation of the resulting complex equation into the real and imaginary parts leads to a system 
of linear equations from which to determine o and 5, 

(04 - 6w25* + c4)d, - 5(30* - 5’)d2 -(w* - c2)d3 - I!,& + h,h, = 0 

45(0* - c*)d, + (o* - 35*)d2 - 2547 + d4 = 0 
(4.6) 

where 

4 = fif2 - A,,A,,v d2 = A*,*12 + A,**,* - f24 1 - fP22 

4 =hfi +h,f, +*11&x2 -*12*2,9 d4 =hBzz +A,*,, 

fi =M+Ajj (j=1,2) 

6 

Fig. 3. 
r 

Fig. 4. 
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The second equation in (4.6) is a polynomial of degree three in 5. It is not difficult to find its real 
roots for any o > 0. After substituting these values of 5 into the first equation (4.6), we obtain an equation 
from which to determine w. This can be solved numerically when Fr, hi, LJ are lixed. The regimes in 
which 5 < 0 corresponds to the values of 61 found in this way are regarded as unstable. 

The results of this; numerical analysis are presented in Fig. 3 for hi = AQ. The solid curve is constructed 
for the parameters corresponding to Fig. 2, and the dashed curve for a one-layer fluid with free surface 
(E + 00, h/u = 2). The region inside the solid curve corresponds to the values of Fr and Ai for which 
radiation instability occurs for a two-layer fluid. Similarly, the region inside the dashed curve corresponds 
to a homogeneous ftuid. 

The results for a two-layer fluid in the case when the stiffness of the horizontal and vertical springs 
are different are presented in Fig. 4 for 112 = 2hi and h = hi/2. In each of these two cases there are 
two ranges of values of Fr and Ai for which radiation instability occurs. 

Despite the fact that the linear approximation used cannot describe the behaviour of a cylinder 
undergoing oscillations with arbitrary amplitude, it may prove useful when determining the 
parameters of the given oscillatory system which are safest from the viewpoint of radiational instability. 

The proposed method can be extended to the case of a fluid of finite depth. It can also be used to 
study the radiati0na.l instability of a medium for which the hydrodynamic loads can be determined using 
point-like multipoles in the same way as in the earlier approach presented in [15]. 

I wish to thank \: B. Kurzin and the coworkers in his laboratory for useful discussions. 
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